Slowly Coupled Oscillators: Phase Dynamics and Synchronization
نویسندگان
چکیده
In this paper we extend the results of Frankel and Kiemel [SIAM J. Appl. Math, 53 (1993), pp. 1436–1446] to a network of slowly coupled oscillators. First, we use Malkin’s theorem to derive a canonical phase model that describes synchronization properties of a slowly coupled network. Then, we illustrate the result using slowly coupled oscillators (1) near Andronov–Hopf bifurcations, (2) near saddle-node on invariant circle bifurcations, and (3) near relaxation oscillations. We compare and contrast synchronization properties of slowly and weakly coupled oscillators.
منابع مشابه
Exact solutions and dynamics of globally coupled phase oscillators
Exact solutions and dynamics of globally coupled phase oscillators 2 Abstract. We analyze mean-field models of synchronization of phase oscillators with singular couplings and subject to external random forces. They are related to the Kuramoto-Sakaguchi model. Their probability densities satisfy local partial differential equations similar to the Porous Medium, Burgers and extended Burgers equa...
متن کاملIntermittent generalized synchronization in unidirection - ally coupled chaotic oscillators
– A new behavior type of unidirectionally coupled chaotic oscillators near the generalized synchronization transition has been detected. It has been shown that the generalized synchronization appearance is preceded by the intermitted behavior: close to threshold parameter value the coupled chaotic systems demonstrate the generalized synchronization most of the time, but there are time intervals...
متن کاملAmplitude dynamics favors synchronization in complex networks.
In this paper we study phase synchronization in random complex networks of coupled periodic oscillators. In particular, we show that, when amplitude dynamics is not negligible, phase synchronization may be enhanced. To illustrate this, we compare the behavior of heterogeneous units with both amplitude and phase dynamics and pure (Kuramoto) phase oscillators. We find that in small network motifs...
متن کاملDelay-induced multistable synchronization of biological oscillators
We analyze the dynamics of pulse coupled oscillators depending on strength and delay of the interaction. For two oscillators, we derive return maps for subsequent phase differences, and construct phase diagrams for a broad range of parameters. In-phase synchronization proves stable for inhibitory coupling and unstable for excitatory coupling if the delay is not zero. If the coupling strength is...
متن کاملPhase reduction method for strongly perturbed limit cycle oscillators.
The phase reduction method for limit cycle oscillators subjected to weak perturbations has significantly contributed to theoretical investigations of rhythmic phenomena. We here propose a generalized phase reduction method that is also applicable to strongly perturbed limit cycle oscillators. The fundamental assumption of our method is that the perturbations can be decomposed into a slowly vary...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal of Applied Mathematics
دوره 63 شماره
صفحات -
تاریخ انتشار 2003